Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35564165

RESUMO

Coronaviruses, that are now well-known to the public, include a family of viruses that can cause severe acute respiratory syndrome (SARS) and other respiratory diseases, such as Middle East respiratory syndrome (MERS). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the seventh member of this coronavirus family, was detected in 2019 and can cause a number of respiratory symptoms, from dry cough and fever to fatal viral pneumonia. Various diagnostic assays ranging from real-time polymerase chain reaction (RT-PCR) to point-of-care medical diagnostic systems have been developed for detection of viral components or antibodies targeting the virus. Point-of-care assays allow rapid diagnostic assessment of infectious patients. Such assays are ideally simple, low-cost, portable tests with the possibility for on-site field detection that do not require skilled staff, sophisticated equipment, or sample pretreatment, as compared to RT-PCR. Since early 2021 when new SARS-CoV-2 variants of concern increased, rapid tests became more crucial in the disease management cycle. Among rapid tests, gold nanoparticle (GNP)-based lateral flow assays (LFAs) have high capacity for performing at the bedside, paving the way to easy access to diagnosis results. In this review, GNP-based LFAs used for either COVID-19 proteins or human response antibodies are summarized and recommendations for their improvement have been suggested.

2.
Iran J Med Sci ; 42(3): 275-283, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28533576

RESUMO

BACKGROUND: Discriminating latent tuberculosis infection (LTBI) from active TBI may be challenging. The objective of this study was to produce the recombinant L-alanine dehydrogenase (AlaDH) antigen and evaluate individuals with LTBI, those with active TBI, and uninfected individuals by enzyme-linked immunospot assay (ELISPOT) in order to distinguish LTBI from active TBI. METHODS: This exploratory study was performed in the Iranian city of Shiraz from 2014 to 2015. The study population (N=99) was divided into 3 groups: individuals with newly diagnosed active TBI (n=33), their household contacts (n=33), and controls (n=33). AlaDH was produced through PCR and cloning methods. The diagnostic characteristics of AlaDH vs. ESAT-6/CFP-10 were evaluated in responses to interferon-γ (IFN-γ) and interleukin-2 (IL-2) with ELISPOT. Differences between the groups were assessed with the Kruskal-Wallis and Mann-Whitney tests for nonparametric data analysis. The statistical analyses were performed with SPSS, version 16. RESULTS: IFN-γ responses to both ESAT-6/CFP-10 (P=0.81) and AlaDH (P=0.18) revealed that there were no significant differences between the individuals with LTBI and those with active TBI. The same results were determined for IL-2 responses to ESAT-6/CFP-10 between the 2 groups, while significantly higher IL-2 responses to AlaDH were observed in LTBI than in active TBI. According to the ROC curve analysis, a cutoff value of 275 SFC showed sensitivity of 75.8% and specificity of 78.8% for distinguishing LTBI from active TBI by IL-2 responses to AlaDH. CONCLUSION: The current study suggests that it may be possible to discriminate LTBI from active TBI by IL-2 responses to AlaDH.

3.
Int J Infect Dis ; 17(9): e723-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23561799

RESUMO

BACKGROUND: Helicobacter pylori infection is associated with gastritis and in some cases with gastric and duodenal ulcers, and even adenocarcinoma. Antibiotic therapy has significant limitations, such as the high cost and the emergence of antibiotic-resistant strains, generating the need for new treatments. The administration of antibody against H. pylori is a new effective therapeutic strategy. In this study, we successfully developed a single-variable domain of heavy chain antibody against recombinant UreC. METHODS: A VHH phagemid library was constructed from immune camel heavy chain antibodies. The nanobodies were displayed on M13 phage. Library selection was performed against UreC recombinant protein. A specific single-variable domain of heavy chain antibody against UreC was screened in five rounds of panning. The nanobody with the highest score in the phage ELISA was selected for soluble expression. The nanobody was purified with a nickel-nitrilotriacetic acid (Ni-NTA) column and confirmed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Affinity, specificity, and urease inhibitory properties of the nanobody were assayed. RESULTS: Here we showed the isolation and purification of a specific nanobody with high affinity against UreC recombinant protein that can inhibit urease activity. CONCLUSIONS: The isolated UreC nanobody can specifically detect and bind to UreC and inhibit urease activity. This nanobody could be a novel class of treatment measure against H. pylori infection.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Helicobacter pylori/enzimologia , Helicobacter pylori/imunologia , Anticorpos de Domínio Único/imunologia , Urease/imunologia , Animais , Afinidade de Anticorpos/imunologia , Reações Cruzadas/imunologia , Biblioteca Gênica , Humanos , Ligação Proteica/imunologia , Estabilidade Proteica , Proteólise , Anticorpos de Domínio Único/genética , Temperatura , Urease/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...